On Hamiltonian Berge cycles in [3]-uniform hypergraphs
نویسندگان
چکیده
Given a set R, hypergraph is R-uniform if the size of every hyperedge belongs to R. A H called covering vertex pair contained in some H. In this note, we show that [3]-uniform on n≥6 vertices contains Berge cycle Cs for any 3≤s≤n. As an application, determine maximum Lagrangian k-uniform Berge-Ct-free hypergraphs and Berge-Pt-free hypergraphs.
منابع مشابه
Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs
We conjecture that for any fixed r and sufficiently large n, there is a monochromatic Hamiltonian Bergecycle in every (r − 1)-coloring of the edges of K n , the complete r-uniform hypergraph on n vertices. We prove the conjecture for r = 3, n 5 and its asymptotic version for r = 4. For general r we prove weaker forms of the conjecture: there is a Hamiltonian Berge-cycle in (r−1)/2 -colorings of...
متن کاملMonochromatic Hamiltonian 3-tight Berge cycles in 2-colored 4-uniform hypergraphs
Here improving on our earlier results we prove that there exists an n0 such that for n ≥ n0, in every 2-coloring of the edges of K n there is a monochromatic Hamiltonian 3-tight Berge cycle. This proves the c = 2, t = 3, r = 4 special case of a conjecture from [5].
متن کاملMonochromatic Hamiltonian t-tight Berge-cycles in hypergraphs
In any r-uniform hypergraph H for 2 ≤ t ≤ r we define an runiform t-tight Berge-cycle of length , denoted by C , as a sequence of distinct vertices v1, v2, . . . , v , such that for each set (vi , vi+1, . . . ,vi+t−1 ) of t consecutive vertices on the cycle, there is an edge Ei of H that contains these t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ , where + j ≡ j. For t = 2 we get...
متن کاملLong Monochromatic Berge Cycles in Colored 4-Uniform Hypergraphs
Here we prove that for n ≥ 140, in every 3-coloring of the edges of K (4) n there is a monochromatic Berge cycle of length at least n− 10. This result sharpens an asymptotic result obtained earlier. Another result is that for n ≥ 15, in every 2-coloring of the edges of K n there is a 3-tight Berge cycle of length at least n− 10.
متن کاملDecomposing complete 3-uniform hypergraphs into Hamiltonian cycles
Using the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph, we continue the investigation of the existence of a decomposition of the complete 3-uniform hypergraph into Hamiltonian cycles began by Bailey and Stevens. We also discuss two extensions of the problem: to the complete 3-uniform hypergraph from which a parallel class of triples has been removed, and to the com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2021.112462